Hyperbolicity of Nodal Hypersurfaces

نویسندگان

  • Fedor Bogomolov
  • Bruno De Oliveira
چکیده

We show that a nodal hypersurface X in P3 of degree d with a sufficiently large number l of nodes, l > 8 3 (d2 − 5 2 d), is algebraically quasi-hyperbolic, i.e. X can only have finitely many rational and elliptic curves. Our results use the theory of symmetric differentials and algebraic foliations and give a very striking example of the jumping of the number of symmetric differentials in families.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolicity of Hypersurfaces with Nodes

Kobayshi’s conjecture proposes that the general hypersurface X of P3 of degree ≥ 5 is hyperbolic. This paper shows that nodal hypersurfaces X with many nodes are algebraically quasi-hyperbolic, i.e. there are only finitely many rational and elliptic curves on X. A key element is the existence of many symmetric log-differentials in the minimal resolution of the nodal hypersurface.

متن کامل

Conical Spacetimes and Global Hyperbolicity

Vickers and Wilson ([26]) have shown global hyperbolicity of the conical spacetime in the sense of well-posedness of the initial value problem for the wave equation in generalized functions. We add the aspect of metric splitting and preliminary thoughts on Cauchy hypersurfaces and causal curves. AMS Mathematics Subject Classi cation (2010): 46F30, 83C75

متن کامل

2 00 5 Weak analytic hyperbolicity of generic hypersurfaces of high degree in P 4

In this article we prove that every entire curve in a generic hypersurface of degree d ≥ 593 in P4 C is algebraically degenerated i.e there exists a proper subvariety which contains the entire curve.

متن کامل

Corrado Segre and Nodal Cubic Threefolds

We discuss the work of Corrado Segre on nodal cubic hypersurfaces with emphasis on the cases of 6-nodal and 10-nodal cubics. In particular we discuss the Fano surface of lines and conic bundle structures on such threefolds. We review some of the modern research in algebraic geometry related to Segre’s work.

متن کامل

DESSINS D’ENFANTS AND HYPERSURFACES WITH MANY Aj-SINGULARITIES OLIVER LABS

We show the existence of surfaces of degree d in È 3 () with approximately 3j+2 6j(j+1) d 3 singularities of type A j , 2 ≤ j ≤ d − 1. The result is based on Chmutov's construction of nodal surfaces. For the proof we use plane trees related to the theory of Dessins d'Enfants. Our examples improve the previously known lower bounds for the maximum number µ A j (d) of A j-singularities on a surfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005